Basic Operations Set A
1. What is the sum of $\dfrac{2}{8}$ and $\dfrac{3}{8}$?
A. $\dfrac{5}{8}$
B. $\dfrac{7}{8}$
C. $\dfrac{1}{4}$
D. $\dfrac{3}{4}$
Show Answer
A. $\dfrac{5}{8}$
To find the sum of fractions with common denominators (bottoms), you simply add the two numerators (tops) and keep the same denominator.
$$\dfrac{2}{8} + \dfrac{3}{8} = \dfrac{2 + 3}{8} = \dfrac{5}{8}$$
2. What is the sum of $\dfrac{3}{10}$ and $\dfrac{4}{10}$?
A. $\dfrac{5}{10}$
B. $\dfrac{7}{10}$
C. $\dfrac{9}{10}$
D. $\dfrac{1}{10}$
Show Answer
B. $\dfrac{7}{10}$
$$\dfrac{3}{10} + \dfrac{4}{10} = \dfrac{3 + 4}{10} = \dfrac{7}{10}$$
3. $\dfrac{6}{7} - \dfrac{2}{7} = $
A. $\dfrac{4}{7}$
B. $\dfrac{5}{7}$
C. $\dfrac{3}{7}$
D. $\dfrac{1}{7}$
Show Answer
A. $\dfrac{4}{7}$
To find the difference of fractions with common denominators (bottoms), you simply subtract the two numerators (tops) and keep the same denominator.
$$\dfrac{6}{7} - \dfrac{2}{7} = \dfrac{6 - 2}{7} = \dfrac{4}{7}$$
4. $\dfrac{8}{9} - \dfrac{3}{9} = $
A. $\dfrac{5}{9}$
B. $\dfrac{4}{9}$
C. $\dfrac{2}{9}$
D. $\dfrac{1}{9}$
Show Answer
A. $\dfrac{5}{9}$
$$\dfrac{8}{9} - \dfrac{3}{9} = \dfrac{8 - 3}{9} = \dfrac{5}{9}$$
5. Convert $\dfrac{33}{5}$ into a mixed number.
A. $6\dfrac{3}{5}$
B. $5\dfrac{3}{5}$
C. $7\dfrac{3}{5}$
D. $4\dfrac{3}{5}$
Show Answer
A. $6\dfrac{3}{5}$
$33 \div 5 = 6$ with a remainder of $3$. Since the original value was represented in fifths, you put the remainder over $5$.
$$33 \div 5 = 6 \text{ remainder } 3 = $$ $$6\dfrac{3}{5}$$
6. What is the product of $\dfrac{4}{9}$ and $\dfrac{3}{7}$?
A. $\dfrac{12}{21}$
B. $\dfrac{12}{27}$
C. $\dfrac{12}{63}$
D. $\dfrac{12}{13}$
Show Answer
C. $\dfrac{12}{63}$
When multiplying fractions, just multiply numerator × numerator and denominator × denominator.
$$\dfrac{4}{9} \times \dfrac{3}{7} = \dfrac{4 \times 3}{9 \times 7} = \dfrac{12}{63}$$
7. Convert $3\dfrac{4}{7}$ to an improper fraction.
A. $\dfrac{25}{7}$
B. $\dfrac{23}{7}$
C. $\dfrac{27}{7}$
D. $\dfrac{29}{7}$
Show Answer
A. $\dfrac{25}{7}$
Multiply the whole number, $3$, by the denominator, $7$, and add the numerator, $4$. Then, write the result over $7$ (the initial denominator).
$$3\dfrac{4}{7} = \dfrac{(3 \times 7) + 4}{7} = $$ $$\dfrac{21 + 4}{7} = \dfrac{25}{7}$$
8. Convert $2\dfrac{5}{8}$ to an improper fraction.
A. $\dfrac{21}{8}$
B. $\dfrac{19}{8}$
C. $\dfrac{23}{8}$
D. $\dfrac{17}{8}$
Show Answer
A. $\dfrac{21}{8}$
$$2\dfrac{5}{8} = \dfrac{(2 \times 8) + 5}{8} = $$ $$\dfrac{16 + 5}{8} = \dfrac{21}{8}$$
9. Change $\dfrac{216}{12}$ to a whole.
A. $24$
B. $18$
C. $12$
D. $36$
Show Answer
B. $18$
To change the improper fraction $\dfrac{216}{12}$ to a whole number, divide $216$ by $12$.
$$216 \div 12 = 18$$
10. Express $\dfrac{30}{6}$ as a whole number.
A. $4$
B. $6$
C. $5$
D. $3$
Show Answer
C. $5$
$$30 \div 6 = 5$$