Basic Operations Set A

1. What is the sum of $\dfrac{2}{8}$ and $\dfrac{3}{8}$?

A. $\dfrac{5}{8}$

B. $\dfrac{7}{8}$

C. $\dfrac{1}{4}$

D. $\dfrac{3}{4}$

Show Answer

A. $\dfrac{5}{8}$

To find the sum of fractions with common denominators (bottoms), you simply add the two numerators (tops) and keep the same denominator.

$$\dfrac{2}{8} + \dfrac{3}{8} = \dfrac{2 + 3}{8} = \dfrac{5}{8}$$


2. What is the sum of $\dfrac{3}{10}$ and $\dfrac{4}{10}$?

A. $\dfrac{5}{10}$

B. $\dfrac{7}{10}$

C. $\dfrac{9}{10}$

D. $\dfrac{1}{10}$

Show Answer

B. $\dfrac{7}{10}$

$$\dfrac{3}{10} + \dfrac{4}{10} = \dfrac{3 + 4}{10} = \dfrac{7}{10}$$


3. $\dfrac{6}{7} - \dfrac{2}{7} = $

A. $\dfrac{4}{7}$

B. $\dfrac{5}{7}$

C. $\dfrac{3}{7}$

D. $\dfrac{1}{7}$

Show Answer

A. $\dfrac{4}{7}$

To find the difference of fractions with common denominators (bottoms), you simply subtract the two numerators (tops) and keep the same denominator.

$$\dfrac{6}{7} - \dfrac{2}{7} = \dfrac{6 - 2}{7} = \dfrac{4}{7}$$


4. $\dfrac{8}{9} - \dfrac{3}{9} = $

A. $\dfrac{5}{9}$

B. $\dfrac{4}{9}$

C. $\dfrac{2}{9}$

D. $\dfrac{1}{9}$

Show Answer

A. $\dfrac{5}{9}$

$$\dfrac{8}{9} - \dfrac{3}{9} = \dfrac{8 - 3}{9} = \dfrac{5}{9}$$


5. Convert $\dfrac{33}{5}$ into a mixed number.

A. $6\dfrac{3}{5}$

B. $5\dfrac{3}{5}$

C. $7\dfrac{3}{5}$

D. $4\dfrac{3}{5}$

Show Answer

A. $6\dfrac{3}{5}$

$33 \div 5 = 6$ with a remainder of $3$. Since the original value was represented in fifths, you put the remainder over $5$.

$$33 \div 5 = 6 \text{ remainder } 3 = $$ $$6\dfrac{3}{5}$$


6. What is the product of $\dfrac{4}{9}$ and $\dfrac{3}{7}$?

A. $\dfrac{12}{21}$

B. $\dfrac{12}{27}$

C. $\dfrac{12}{63}$

D. $\dfrac{12}{13}$

Show Answer

C. $\dfrac{12}{63}$

When multiplying fractions, just multiply numerator × numerator and denominator × denominator.

$$\dfrac{4}{9} \times \dfrac{3}{7} = \dfrac{4 \times 3}{9 \times 7} = \dfrac{12}{63}$$


7. Convert $3\dfrac{4}{7}$ to an improper fraction.

A. $\dfrac{25}{7}$

B. $\dfrac{23}{7}$

C. $\dfrac{27}{7}$

D. $\dfrac{29}{7}$

Show Answer

A. $\dfrac{25}{7}$

Multiply the whole number, $3$, by the denominator, $7$, and add the numerator, $4$. Then, write the result over $7$ (the initial denominator).

$$3\dfrac{4}{7} = \dfrac{(3 \times 7) + 4}{7} = $$ $$\dfrac{21 + 4}{7} = \dfrac{25}{7}$$


8. Convert $2\dfrac{5}{8}$ to an improper fraction.

A. $\dfrac{21}{8}$

B. $\dfrac{19}{8}$

C. $\dfrac{23}{8}$

D. $\dfrac{17}{8}$

Show Answer

A. $\dfrac{21}{8}$

$$2\dfrac{5}{8} = \dfrac{(2 \times 8) + 5}{8} = $$ $$\dfrac{16 + 5}{8} = \dfrac{21}{8}$$


9. Change $\dfrac{216}{12}$ to a whole.

A. $24$
B. $18$
C. $12$
D. $36$

Show Answer

B. $18$

To change the improper fraction $\dfrac{216}{12}$ to a whole number, divide $216$ by $12$.

$$216 \div 12 = 18$$


10. Express $\dfrac{30}{6}$ as a whole number.

A. $4$
B. $6$
C. $5$
D. $3$

Show Answer

C. $5$

$$30 \div 6 = 5$$

Next

Related