Basic Operations Set B
1. Without using a calculator, convert the decimal to a simplified fraction.
$$ 0.5 = \dfrac{?}{?} $$
A. $\dfrac{1}{2}$
B. $\dfrac{2}{3}$
C. $\dfrac{3}{4}$
D. $\dfrac{4}{5}$
Show Answer
A. $\dfrac{1}{2}$
$$ 0.5=5\hspace{2mm}\text{tenths}=\dfrac{5}{10} $$
$$ 0.5=\dfrac{1}{2} $$
2. Divide.
$$ 200 \div 50 = $$
A. $3$
B. $4$
C. $5$
D. $10$
Show Answer
B. $4$
$$ \begin{aligned}{200}\div{50} &= {20\text{ tens}}\div {5\text{ tens}} \\ \\ {{200}\div{50}} &= 4 \end{aligned} $$
3. Estimate.
$$ 178.4 \div 6 \approx $$
A. $3$
B. $30$
C. $300$
D. $3,000$
Show Answer
B. $30$
Let’s estimate the quotient by rounding the factors to a friendly number.
A friendly number is a number that might be easy for us to add, subtract, multiply and divide.
Common friendly numbers are multiples of $2$, $5$ and $10$.
$178.4$ is close to $180$.
$6$ is already a friendly number.
$$ 180 \div 6=30 $$
$$ 178.4 \div 6 \approx 30 $$
4. Don starts to use the standard algorithm to solve $418\times5$. His work is shown below.
$$ \begin{aligned} {\overset{}4}\overset{{y}}1\overset{}8&\\ \underline{{} \times \phantom{~~~~} 5}&\\ 0& \end{aligned} $$
What number should Don replace $y$ with?
A. $3$
B. $4$
C. $5$
D. $6$
Show Answer
B. $4$
First, Don multiplies $5 \times 8 = 40$.
Don places the $0$ ones in the ones column and carries the $4$ tens to the tens column.
$$ \begin{aligned} \overset{{}}4\overset{4}1\overset{}{8}&\\ \underline{{} \times \phantom{~~~~} 5}&\\ 0& \quad {5} \times {8} = {40} \end{aligned} $$
Don should replace $y$ with $4$.
5. Multiply.
$$ 5\times 1\dfrac{3}{4} ~=~ $$
A. $5\dfrac{1}{4}$
B. $8\dfrac{3}{4}$
C. $6\dfrac{1}{2}$
D. $7\dfrac{1}{4}$
Show Answer
B. $8\dfrac{3}{4}$
First, let’s rewrite $1\dfrac{3}{4}$ as a fraction.
$$ 1{\dfrac{3}{4}} = {1} +{\dfrac{3}{4}} $$
$$ \phantom{1\dfrac{3}{4} }= {\dfrac{4}{4}} + {\dfrac{3}{4}} $$
$$ \phantom{1\dfrac{3}{4} }= \dfrac{{4} +3}{4} $$
$$ \phantom{1\dfrac{3}{4} }= \dfrac{7}{4} $$
Then, we can multiply.
$$ \phantom{=} 5 \times \dfrac{7}{4} $$
$$ =\dfrac{5\times 7}{4} $$
$$ =\dfrac{35}{4} $$
The product, in lowest terms, is $\dfrac{35}{4}$.
We can also write this as $8\dfrac{3}{4}$.
6. Solve for $k$.
$$\dfrac{4}{3} = \dfrac{11}{k}$$
A. $\dfrac{31}{4}$
B. $\dfrac{32}{4}$
C. $\dfrac{33}{4}$
D. $\dfrac{34}{4}$
Show Answer
C. $\dfrac{33}{4}$
$$\dfrac{4}{3} = \dfrac{11}{k}$$
Multiply both sides by $k$.
$$ {k} \times \dfrac{4}{3} = \dfrac{11}{k} \times {k} $$
$$ \dfrac{4}{3}{k} = 11 $$
Multiply both sides by ${\dfrac{3}{4}}$.
$$ \dfrac{4}{3} {k} \times {\dfrac{3}{4}} = 11 \times {\dfrac{3}{4}} $$
$$ {k} = \dfrac{11 \times {3}}{{4}} $$
$$ k = \dfrac{33}{4} $$
7. Multiply.
$$ \underline{\hspace{1cm}} = 5 \times 0.25 $$
A. $1.25$
B. $1.00$
C. $1.20$
D. $1.50$
Show Answer
A. $1.25$
There are many ways to solve this problem. Let’s see three ways we could multiply.
1. Place value strategy
We can think in terms of hundredths:
$$ \begin{aligned} &\phantom{{}={}}5\times 0.25\\ &=5\times25\text{ hundredths}\\ &= 125\text{ hundredths}\\ &=1.25 \end{aligned} $$
2. Estimation strategy
We can multiply the digits, then use estimation to place the decimal point.
$$ 5\times25=125 $$
The value $0.25$ is equal to $\dfrac{1}{4}$.
$\dfrac{1}{4}$ of $5$ is between $1$ and $2$, so $5\times 0.25$ is between $1$ and $2$.
$$ 5\times 0.25=1.25 $$
3. Fraction multiplication strategy
Decimals are a kind of fraction, so we can use fraction multiplication.
$$ \begin{aligned} &\phantom{{}={}}{5}\times{0.25}\\ &={\dfrac{5}{1}} \times {\dfrac{25}{100}}\\ &= \dfrac{{5} \times {25}}{{1} \times {100}}\\ &=\dfrac{125}{100}\\ &=1.25 \end{aligned} $$
The answer
$$ 1.25=5 \times 0.25 $$
8. Is $156,970$ divisible by $5$?
A. Yes
B. No
Show Answer
A. Yes
$156,970$ is divisible by $5$ if it can be divided by $5$ without leaving a remainder.
A number is divisible by $5$ if the last digit is a $0$ or a $5$.
The last digit of $156,970$ is $0$, so yes $156,970$ is divisible by $5$.
9. A circle has a circumference of $1,133.54$ units. What is the diameter of the circle?
A. $281$ units
B. $302$ units
C. $361$ units
D. $526$ units
Show Answer
C. $361$ units
Formula for the circumference of a circle
$$ \text{Circumference}= 2\pi r = \pi d $$
Solving for the diameter
Let’s substitute in the circumference, then solve for the diameter.
$$ \begin{aligned} 1{,}133.54 &= \pi d \\ 1{,}133.54&\approx 3.14 d\\ 361&\approx d \end{aligned} $$
The answer
The diameter is approximately $361$ units.
10. Add.
$$ \underline{\hspace{1cm}} = 55.3 + 28.2 $$
A. $82.5$
B. $83.5$
C. $83.6$
D. $83.8$
Show Answer
B. $83.5$
We can group the whole numbers together and the decimals together.
$$ \begin{aligned} &({55} + {28}) + ({0.3} + {0.2})\\ &={83} + {0.5}\\ &=83.5 \end{aligned} $$
$$ 83.5 = 55.3 + 28.2 $$
Source: Khan Academy